

Future Advancements: Recommendations from the IRAC-JIFSAN Listeria monocytogenes Dose- Response Workshop

Isabel Walls, Ph.D.

National Program Leader, Epidemiology of Food Safety USDA National Institute of Food and Agriculture iwalls@nifa.usda.gov; 202-401-6357

Overview

- Workshop held in March 2011 to discuss updating the 2003 FDA/ FSIS Lm DR models
- Suggestions to update the 2003 model
- Future strategies for DR modeling for Lm development of mechanistic models for microbial risk assessment

 Key need – to reduce uncertainty in current models

Purpose of March 2011 Workshop

- To identify key factors and data to be considered when the Lm Dose Response models are updated
- Presentations followed by general discussion in break out groups
- 1. What new knowledge about *Lm* and listeriosis could be applied to update the 2003 FDA/FSIS/CDC and/or 2004 FAO/WHO dose-response models?
- 2. What approach or modeling methodology could be used to update these dose-response models now?
- 3. What additional data could help to improve the *Lm* dose-response function in the future?

Does the current approach remain appropriate given new knowledge in the last 10 years? What would be an appropriate alternative approach?

- Short term, intermediate and long term solution
 - Short term:
 - Use data collected since 2003 to update risk assessment
 - Compare predicted cases to new CDC estimates
 - Medium term:
 - Start collecting new data in animal models more closely reflective of humans
 - Better modeling of data on susceptible populations
 - Long term:
 - Develop a new mechanistic model

Short term

- Use data collected since 2003 and use it to update risk assessment – reduce uncertainties
- Compare predicted cases to new CDC estimates
- Re-visit risk ranking may get new ranking
- Confusion over risk per serving vs risk per annum
 - risk associated with raw vs pasteurized milk
- New data are available:
 - Lm strain variability in virulence
 - Exposure data levels of Lm in foods
 - Dose response data studies in monkeys
 - Outbreak data cantaloupe

Medium term

- Start collecting new data relevant to pathogen, host and environment
- More data on virulence of strains
- More data on susceptible populations
 - May be more relevant to have one DR curve for highly susceptible populations and one for normal healthy population
- Data in animal models more closely reflective of humans
 - Improve extrapolation and reduce uncertainty
- More data on food matrix effect

- Pathogen data
- More data on virulence of strains
 - prevalence and numbers / distribution in food supply and clinical samples
 - Strain ID and inIA sequence

- Host data
- Pregnancy Status
 - Test spontaneous miscarriage tissue for Lm
- Age not just > 60; segregate those >80
- Better data on immune status
 - E.g., transplant patient, chemotherapy
- Examine genetic variation controlling host susceptibility
 - Includes major histocompatibility complex, cellular and humoral immunity, E-cadherin expression
- Stress
- Obesity

Host data

- Try to determine the exposed population to calculate attack rate
 - Collect data on individuals who were exposed but did not get sick
- Need better diagnostics including immune status, including possible involvement of anti-Lm IgA?
- Effect of multiple doses
- Use of antibiotics reduces listeriosis in HIV patients

New data to collect - considerations

- Data in animal models
- Rat/ mouse models currently used: realistic? credible?
 - Need to be scaled using human data
- E-cadherin in rats/mice not the same as human
- Guinea pig e-cadherin is the same as human
- Guinea pig and non-human primate models may overestimate risk
- Transgenic (humanized) mice may be more useful
- Gerbils may prove better than rats/ mice
- Cell culture or organ culture data can be used
- Human placenta may be a useful model

New data to collect - considerations

- Data in animal models
- How well do the animal data predict what will happen in humans?
- May need scaling factors if not close
- Endpoint of interest in animal model should be same as that of interest in humans
 - Currently use death
- Susceptibility of animal model
 - Pregnant animal?
 - Immune compromised animal?
 - Old animal?

Food data

- Collect data during outbreak investigations:
- Ability to grow in the food vehicle. Consider the actual recipe and typical handling
- Sampling plan and detection/enumeration method
- Enumeration, but consider the potential for nonrandom distribution in the food during sampling – need to test many samples if possible
- Need to determine whether enough colonies were picked from positive samples, to capture the range of different strains that may be present.

Factors to consider in DR modeling

- Extrapolation from high to low doses of pathogen
- Extrapolation across species
- Extrapolation from normal healthy individuals to susceptible individuals
- Extrapolation from one type of food environment to another

What approaches should be used for extrapolation to low dose?

- Use whole range of data available
 - Consider data from outside USA
- Model constraints assume one organism causes disease?
 - Threshold vs non threshold models
- Variation in virulence among Lm strains
- Impact of multiple doses
- Need to consider uncertainties associated with data

What approaches should be used for extrapolation from animals to humans?

- Biologically based extrapolation experimental data
- Human relevance
- Scaling factors: May or may not be necessary, use with caution
 - Depend on strain, susceptible population and food
 - Additional data can inform and may reduce need for scaling factors
- Need to consider uncertainties associated with data
- Need to consider susceptibility look at this as a continuous variable?

Longer term

- Develop mechanistic model for Lm
- Need to integrate disease triangle data
 - Pathogen, host, environment (food)
- Pathogen factors:
 - Strain variability
- Host factors:
 - Not appropriate to use levels in food at consumption as "dose" – host factors should be considered
 - Need to focus more on susceptible populations
- Food matrix effects:
 - Fat levels

PATHOGEN, HOST, ENVIRONMENT (FOOD) FACTORS IMPORTANT AT A GIVEN STAGE

Data for mechanistic model

- Pathogen data:
 - Need multiple strains with varying virulence
 - Growth and concentration of Lm in the GI lumen (small intestine)
 - Role of microbiota in attachment and entry to enterocytes
 - Role of gene expression (listeriolysin and other important pathogen proteins) when in foods and after consumption

Data for mechanistic model

- Host data
 - Immunocompromised hosts—how to define, is there a gradation/ continuum?
 - Measures/markers of compromised immunity that can be applied during outbreak investigations
 - Role of T cell (cell mediated) and antibody (humoral) immunity
 - More data on incubation time for Lm infections
 - Lm in clinical samples are certain strains more frequently associated with diarrhea, meningitis, miscarriage

Data for mechanistic model

- Food data
 - How does environment impact pathogen
 - Characteristics of foods associated with outbreaks/
 sporadic illness food composition, pH, a_w, etc.
 - Updated data for foods most likely to be associated with illness
 - Enumeration of pathogens in food samples (not just presence/ absence) including in an outbreak or recall
 - Levels of Lm in the home/ storage time at home

What factors should be considered in model validation?

- Model validation is difficult due to lack of controlled human data sets – use new CDC data
- What is the purpose of the model? Given the data limitations, is the model "good enough"
- Can you use epi data for both developing and validating model?
- Need separate sets of data, e.g. from another country
- Which mathematical model should you pick? This can impact the result.
- Need some biological plausibility to choosing a model

Other issues to consider

- Success will depend on improved communication among risk assessors and risk managers
- Clearly defined risk management questions are needed to avoid lengthy, ambiguous risk assessments
- Food safety policy should be informed by risk assessments
- Should you use the "worst case" scenario most virulent strain, most susceptible animal model?
- Low levels of exposure may protect host confer immunity
 - U shaped DR curve?

How should we quantify uncertainty about Lm DR models?

- Uncertainty ≠ variability
- Need to reduce uncertainty in current models by using more and better data
 - Need better data on susceptible populations
- Need to determine the number of variables that would be sufficient (fit for purpose)
- Focus on data gaps relevant to addressing public health issues of dose threshold and food safety objective
- Multiple tools are available decision trees, Monte Carlo simulation

Controlling risk

- New information should be provided to industry, (processors, retailers, food service) health care providers, consumers to help them reduce risks associated with Lm in foods
- Extension service should educate small processors/ foodservice
- Education campaigns
 - Target at-risk populations and their caregivers
- Inform policy decisions. Update current standards?
 - Regulation to ensure compliance with standards